



# Introduction

**Continual Learning Problem:** continuously training neural networks for a new task without information trained on the previous tasks. The goal is to make the network perform well for both tasks.

**Catastrophic Forgetting:** neural networks lose the performance for the previous tasks after training the new task.

**Incremental moment matching (IMM):** incrementally matching the moment of the posterior distribution of the neural network which is trained on the previous and the new tasks.

# Contribution

- 1. Propose two types of **incremental moment matching (IMM)** methods for overcoming catastrophic forgetting
- Mean-Incremental Moment Matching (mean-IMM)
- Mode-Incremental Moment Matching (**mode-IMM**)
- 2. Interpret the IMMs as the **Bayesian** perspectives
- Propose drop-transfer as both a knowledge transfer method for IMM and a **continual learning method**
- **Apply various transfer techniques** in the IMM procedure to make our assumption of Gaussian distribution reasonable

# **Incremental Moment Matching**



propose applying various transfer techniques for the IMM procedure.

# **Overcoming Catastrophic Forgetting by Incremental Moment Matching**

## Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun

Seoul National University

**Jung-Woo Ha** Clova AI Research, NAVER Corp.

# Merging by Approximating Mixture of Gaussian Posteriors

**Mean-IMM:** minimize local KL-divergence

$$\mu_{1:K}^{*}, \Sigma_{1:K}^{*} = \underset{\mu_{1:K}, \Sigma_{1:K}}{\operatorname{argmin}} \sum_{k}^{K} \alpha_{k} KL(q_{k} || q_{1:K})$$
$$\mu_{1:K}^{*} = \sum_{k}^{K} \alpha_{k} \mu_{k}$$
$$\Sigma_{1:K}^{*} = \sum_{k}^{K} \alpha_{k} (\Sigma_{k} + (\mu_{k} - \mu_{1:K}^{*})(\mu_{k} - \mu_{1:K}^{*})^{T})$$

Assume local posterior and approximated global posterior is Gaussian

**Mode-IMM**: find a mode of mixture of local posteriors

$$\mu_{1:K}^*, \Sigma_{1:K}^* = \operatorname{argmax} \sum_{k}^{K} \alpha_k q_k$$
$$\mu_{1:K}^* = \Sigma_{1:K}^* \cdot \sum_{k}^{K} \alpha_k \Sigma_k^{-1} \mu_k$$
$$\Sigma_{1:K}^* = (\sum_{k}^{K} \alpha_k \Sigma_k^{-1})^{-1}$$

# **Making Search Spaces Smooth by Transfer Techniques**

### **Transfer Techniques for IMM**

**Byoung-Tak Zhang** Seoul National University & Surromind Robotics



Use inverse Fisher matrix as covariance matrix



#### **Smooth Search Space**

Weight-transfer makes the search space convex-like (CIFAR-10)



### ACKNOWLEDGMENT This work was supported by Naver Corp. and partly by the Korea government (IITP-2017-0-01772-VTT, IITP-R0126-16-1072-SW.StarLab, KEIT-10044009-HRI.MESSI, KEIT-10060086-RISF)

### **Comparison on Disjoint MNIST and Shuffled MNIST Datasets**

|                              | Explanation of             | Untuned            |                       | Tuned              |                       |  |
|------------------------------|----------------------------|--------------------|-----------------------|--------------------|-----------------------|--|
| Disjoint MNIST Experiment    | Hyperparam                 | Hyperparam         | Accuracy              | Hyperparam         | Accuracy              |  |
| SGD 3                        | epoch per dataset          | 10                 | 47.72 (± 0.11)        | 0.05               | 71.32 (± 1.54)        |  |
| L2-transfer [25]             | $\lambda$ in (10)          | -                  |                       |                    | $85.81 (\pm 0.52)$    |  |
| Drop-transfer                | p  in (11)                 | 0.5                | 51.72 (± 0.79)        | 0.5                | $51.72 (\pm 0.79)$    |  |
| EWC 8                        | $\lambda$ in (20)          | 1.0                | $47.84 (\pm 0.04)$    | 600M               | 52.72 (± 1.36)        |  |
| Mean-IMM                     | $\alpha_2$ in (4)          | 0.50               | $90.45 (\pm 2.24)$    | 0.55               | $91.92 (\pm 0.98)$    |  |
| Mode-IMM                     | $\alpha_2$ in (7)          | 0.50               | $91.49 (\pm 0.98)$    | 0.45               | $92.02 (\pm 0.73)$    |  |
| L2-transfer + Mean-IMM       | $\lambda / \alpha_2$       | 0.001 / 0.50       | 78.34 (± 1.82)        | 0.001 / 0.60       | $92.62 (\pm 0.95)$    |  |
| L2-transfer + Mode-IMM       | $\lambda$ / $lpha_2$       | 0.001 / 0.50       | $92.52 (\pm 0.41)$    | 0.001 / 0.45       | $92.73 (\pm 0.35)$    |  |
| Drop-transfer + Mean-IMM     | $p$ / $lpha_2$             | 0.5 / 0.50         | $80.75 (\pm 1.28)$    | 0.5 / 0.60         | $92.64 (\pm 0.60)$    |  |
| Drop-transfer + Mode-IMM     | $p$ / $lpha_2$             | 0.5 / 0.50         | $93.35 (\pm 0.49)$    | 0.5 / 0.50         | $93.35 (\pm 0.49)$    |  |
| L2, Drop-transfer + Mean-IMM | $\lambda$ / $p$ / $lpha_2$ | 0.001 / 0.5 / 0.50 | $66.10 (\pm 3.19)$    | 0.001 / 0.5 / 0.75 | <b>93.97</b> (± 0.23) |  |
| L2, Drop-transfer + Mode-IMM | $\lambda$ / $p$ / $lpha_2$ | 0.001 / 0.5 / 0.50 | <b>93.97</b> (± 0.32) | 0.001 / 0.5 / 0.45 | <b>94.12</b> (± 0.27) |  |
|                              |                            |                    |                       |                    |                       |  |
| Shuffled MNIST Experiment    |                            | Hyperparam         | Accuracy              | Hyperparam         | Accuracy              |  |
| SGD 3                        | epoch per dataset          | 60                 | $89.15 (\pm 2.34)$    | -                  | ~95.5 8               |  |
| L2-transfer 25               | $\lambda$ in (10)          | -                  | -                     | 1e-3               | 96.37 $(\pm 0.62)$    |  |
| Drop-transfer                | p in (11)                  | 0.5                | $94.75 (\pm 0.62)$    | 0.2                | $96.86 (\pm 0.21)$    |  |
| EWC 8                        | $\lambda$ in (20)          | -                  | -                     | -                  | ~98.2 [8]             |  |
| Mean-IMM                     | $\alpha_3$ in (4)          | 0.33               | $93.23 (\pm 1.37)$    | 0.55               | $95.02 (\pm 0.42)$    |  |
| Mode-IMM                     | $\alpha_3$ in (7)          | 0.33               | $98.02 (\pm 0.05)$    | 0.60               | $98.08 (\pm 0.08)$    |  |
| L2-transfer + Mean-IMM       | $\lambda$ / $\alpha_3$     | 1e-4 / 0.33        | 90.38 (± 1.74)        | 1e-4 / 0.65        | $95.93 (\pm 0.31)$    |  |
| L2-transfer + Mode-IMM       | $\lambda$ / $lpha_3$       | 1e-4 / 0.33        | <b>98.16</b> (± 0.08) | 1e-4 / 0.60        | 98.30 (± 0.08)        |  |
| Drop-transfer + Mean-IMM     | $p$ / $lpha_3$             | 0.5/0.33           | $90.79 (\pm 1.30)$    | 0.5 / 0.65         | $96.49 (\pm 0.44)$    |  |
| Drop-transfer + Mode-IMM     | $p$ / $lpha_3$             | 0.5/0.33           | $97.80 (\pm 0.07)$    | 0.5 / 0.55         | $97.95 (\pm 0.08)$    |  |
| L2, Drop-transfer + Mean-IMM | $\lambda / p / \alpha_3$   | 1e-4/0.5/0.33      | $89.51 (\pm 2.85)$    | 1e-4 / 0.5 / 0.90  | $97.36(\pm 0.19)$     |  |
| L2, Drop-transfer + Mode-IMM | $\lambda / p / \alpha_3$   | 1e-4/0.5/0.33      | $97.83 (\pm 0.10)$    | 1e-4 / 0.5 / 0.50  | $97.92 (\pm 0.05)$    |  |





Egocentric Videu



31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



# **Experimental Results**

### **Test Accuracies with Different Balancing Parameters**

#### **Comparison on Lifelog Dataset** 1 10

| : Vic | leo record | led from | Google | Glass, | 660,000 | instances, | 3 ו | participants, | <b>46</b> | days |
|-------|------------|----------|--------|--------|---------|------------|-----|---------------|-----------|------|
|       |            |          |        |        |         |            |     |               |           |      |

|                   | Location | Sub-location | Activity | A     | В     | С     |
|-------------------|----------|--------------|----------|-------|-------|-------|
| architecture [12] | 78.11    | 72.36        | 52.92    | 67.02 | 58.80 | 77.57 |
|                   | 77.60    | 73.78        | 52.74    | 67.03 | 57.73 | 79.35 |
|                   | 77.14    | 75.76        | 54.07    | 67.97 | 60.12 | 78.89 |

JK is supported by 2017 Google PhD Fellowship.